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transcriptomics chromatin architecture cis-regulatory networks... ...

Future directions

➙ TF-binding and cis-regulation regulate 
those functions  
➙ Many results at the price of one assay
➙ Modern professional GPUs necessary

Multiple instances of C.La.P. can be integrated 
in a single meta-model to contextually model 
higher order biological functions.

➙ Contact us for more !
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ATAC-seq signal around CTCF 

Distance from target center

ATAC-seq signal imbalance in GT 
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Distance from target center

mA positions (count:52574)
non mA PWMs (count:34215)

Right: We can visualize the imbalance in a single line by subtracting the two signals. The imbalance around PWMs that 
overlap mA positions is much higher than those that don't because C.La.P. identifies real protein binding events.

Left: By aggregating the ATAC-seq signal over multiple mA positions, we visualize the characteristic imbalance of + and - 
sequencing reads around events of protein binding. 
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ATAC-seq imbalance - low score PWMS
mA positions (count:3985)
non mA PWMs (count:6443)
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ATAC-seq imbalance out of GT regions

Distance from target center

mA positions (count:19057)
non mA PWMs (count:458087)
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Left: C.La.P.'s mA positions at times overlap PWMs outside of ground truth CTCF regions. The ATAC-seq signal imbalance 
shows that the model detects protein binding events even when those have not been captured by the ChIP-seq assay.
Right: PWM hits with very low score (here with score lower than 6) exibit higher ATAC-seq signal imbalance when overlapping 
C.La.P.'s mA positions. The model relies on more than the genomic sequence to model protein binding.

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No 952914

C.La.P. identifies real protein-DNA binding events, as evidenced by the characteristic ATAC-seq signal imbalance, 
even when those have not been captured by the ChIP-seq assay.

In the case of the CTCF class, the model accurately predicts CTCF binding sites, but has a harder time in predicting the edges of the target ranges.
Analysis of its attention mechanism reveals its ability to pinpoint CTCF binding sites with nucleotide-level precision. 

These predicted binding sites overwhelmingly overlap with CTCF PWM hits, but not always those with the highest score. 

Position of token on the sample

With applying attention, we produce a normalized attention score per token for any fine-tuning sample (Red and black line in the figure above). When the sample contains a ground 
truth or predicted CTCF target, the model's attention-peaks (mA) overwhelmingly overlap with hits for CTCF PWMs. While these mA positions typically overlap PWMs with high 
scores, that is not always the case as is showcased in the example above.
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Normalized average attention per token (Y axis) over one of the validation fine-tuning samples
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Rolling mean attention

Model predicted CTCF region

CTCF PWM hit (score)

CTCF ChIP-seq signal extends for a random number of nucleotides away from the binding site at the 
center. C.La.P.'s False Positive and False Negative predictions are more common at the edges of real 
and predicted targets showing that the model captures the binding site but misses the borders.
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Samples with real and/or predicted CTCF targets. 
Centered on those real or predicted targets.
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True Positive
False Positive
False Negative
F1 score
CTCF PWM

Datasets
all data from ENCODE project

pre-training: 
75 experiments (ATAC-seq)

4.7M training samples
0.53M validation samples

fine-tuning: 
33 experiments (ATAC-seq and 

CTCF,H3k27ac,H3k4me3 ChIP-seq)
1.5M training samples

genomic sequence : 5 features
ATAC-seq signal: 2 features

DNA-shape: 20 features
masking: 1 feature

Model Input

convolutional layer 0 
kernel size: 3

stride: 1
padding: none

output features: base(512), large(1024)

convolutional layer 1
kernel size: 9

stride: 1
padding: none

output features: base(512), large(1536)

convolutional layer 2
kernel size: 13

stride: 1
padding: none

output features: base(768), large(2048)

Tokenizing/Embedding
Single Linear Layer

4 classes output

Binary Cross Entropy loss only on 
masked tokens

Pretraining Task Head

Single Linear Layer
3 classes output

Binary Cross Entropy 
per token, per class.

Fine-tuning Task Head

Flash Attention
Alibi positional encoding

dropout: 0.1
#Layers: base(4), large(16)
#Heads: base(12), large(32)

Hidden size: base(768), large(2048)
Feed Fwd. size: base(3072), large(4096)

Encoder

batch size: 5

Noam Optmizer
factor: 0.1

warmup steps: 2000
decay:0

Training Hyperparameters

The model, which consists of a convolutional tokenizer, followed by a transformer-encoder body and the task heads, was pre-trained with a masking task 
and fine-tuned with a nucleotide classification task for CTCF, H3k27ac, and H3k4me3. It achieves F1 scores of over 0.85 per nucleotide for all three classes. 
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Fine-tuning large model

Transformers are emerging as a promising tool in cis-regulation and chromatin modeling, 
but the typical design of relying solely on the reference genomic sequences as input severely limits their applicability in biological research.

We introduce C.La.P. (Chromatin Language Processing), a transformer model that integrates genomic sequences with ATAC-seq signal 
to model individual cis-regulatory elements (CREs). The inclusion of ATAC-seq signal as input facilitates the modeling of Transcription Factor binding sites 

through the 'shadows' created by DNA-bound proteins. Our approach allows the model to make context-dependent predictions,
unlocking its potential for real-world applications.
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CLaP CLaP CLaP➙ ATAC-seq helps TF binding modeling  
➙ ATAC-seq provides context
➙ inactive CRE regions are not included
➙ non-CRE regions are not included
➙ foundational model 

input

MODEL

output

ATCGATCGATCGATCGATCGATCGATCGAT

Inputs large windows of reference genomic 
sequence to simulate large numbers of trained 
features.

➙ no biological context awareness
➙ CRE regions are always included
➙ non-CRE regions are also included
➙ even the largest windows are too small

The typical modeling approach Our approach
Uses ATAC-seq to isolate CREs as samples and 
includes the ATAC-seq signal in the model.
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