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Phenomenological (statistical) models:
The purpose is to characterize a pattern or a phenomena,
to demonstrate the relationships between the relevant variables.

Top-down

$

Bottom-up

Mechanistic models:

The purpose is to understand the underlying
dynamics, the processes and the mechanisms
that lead to a sort of collective behavior the
emergence of a studied pattern or a phenomena.




Models can be:

* Scale models: smaller versions of the target displaying reduction in size and
systematic reduction in the level of detail and complexity.

 Toy models: some characteristics of the target are extremely simplified in order
to allow a deep control of the model.

 Analogical models: based on an analogy between the target system and a
better understood phenomenon.

(Gilbert 2008)



A model is ,,an ultimate way of asking
an isolated (specific) scientific question”
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Differentiating groups/ subpopulations
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Differentiating individuals OR adding complex population structure
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Agent-based models

Agent-based modeling is a computational method that enables a
researcher to create, analyze, and experiment with models
composed of agents that interact within an environment.

A form of computational science aiming to capture the essence of
the studied system by retaining the fundamental ingredients built in

a simplified system with which we can study the specific questions
and problems.



A quick terminology

 Humans, banks, companies, countries - agent-based models
* Biological entities = individual-based models

 Molecules, compounds, cells - particle-based models

+ Multi-agent models (interactions) €<= Individual-based models (development)
+ Multi-agent systems (complex adaptive systems)
+ Intelligent agents (Al)

+ Cellular Automaton (spatial)



History of IBMs and ABMs
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ABM history: the first ABM and the Monte Carlo Method

(Coccetti 2016; Zhang 2021; wikipedia)



ABM history: The cellular automaton & Game of Life

A cellular automaton is a collection of "colored" cells on a grid of specified
shape that evolves through a number of discrete time steps according to a
set of rules based on the states of neighboring cells.
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(Turing 1950; von Neumann 1951,1956; Conway 1970; Wolfram 1983; Wahyudi et al. 2015; macleans.ca)



ABM history: CA & Game of life
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von Neumann
Neighborhood

Moore
Neighborhood

Extended Moore
Neighborhood

Two-dimensional Lattice Configurations
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ABM history: CA & Game of life
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ABM fundamentals: topology, population structure

a
Cellular Automata (von Neumann)

d

Geographic Information System (GIS)

b

Euclidean 2D/3D Space

Network topology
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(Macan 2010)



Multi-layer ABM & heterogeneous layers

(Gaudlet 2021)



What is an agent?

Function An agent:

e jsself-contained and unique,
e isautonomous and self-directed, has behaviors,

+ memory * has a state that changes over time,
* issocial having dynamic interactions;
They can also be:
+autonomy | AV  adaptive,
* goal-directed
* heterogeneous
——a‘ —a .
4 Sensors Environment
@)
O percepts
-
S environment
8 actions
©
)
Sf effectors

(Bodea 2007; Macan 2010; Telgen 2017)



Main features of Agents

* Autonomy: simple decision rules

* Social ability: interaction between agents

* Reactivity: perceive stimuli from others or from the environment
* Proactivity: agents have goals

Main characteristics of Agents

* Perception: observe the environment and closeby agents

* Performance: react according to a set of behaviors

* Memory: storing information about a number of past states, actions

* Policy: a set of rules, heuristics, or strategies controlling their response based
on the present situation also taking into account their past



More (potential) features for ABMs

Large, closed systems
Flexibility
Modularity

Tracking the behavior of each unit
through time

Dynamic system (dep. variables)
Simple, mechanistic rules

Agent heterogeneity (no representative
agent)

Bounded rationality, limited knowledge

Agents have aims, objectives

Interactions between the agents
Shared environment

Interaction/ population /
environment structure

Feed-back between the environment
and the agents

Adaptation, learning (evolutionary,
individual, social, imitation)

Linking different organizational levels

Scale separation

e Stochasticity, randomness



ABM fundamentals: state (S) —rule (R) —input (l) architecture

A ~(S,R); S={S'.8%....8: R: (SeI)>Su1



The dynamics of ABM simulations

e Complex systems

e Stochastic symmetry breaking

* Emergent properties

* Non-equilibrium dynamics and outcomes

 Multi-stable systems, dependency of initial conditions, hysteresis effect
 Phase transitions, tipping points, self-organized criticality, critical phenomena,

fat tail events

 Cheap experimenting, in silico labs



Designing an ABM

1 - What specific problem should be solved by the model? What specific questions should the model answer?
What value-added would agent-based modelling bring to the problem that other modelling approaches cannot
bring?

2 - What should the agents be in the model? Who are the decision makers in the system? What are the entities
that have behaviours? What data on agents are simply descriptive (static attributes)? What agent attributes would

be calculated endogenously by the model and updated in the agents (dynamic attributes)?

3 - What is the agents’ environment? How do the agents interact with the environment? Is an agent's mobility
through space an important consideration?

4 - What agent behaviours are of interest? What decisions do the agents make? What behaviours are being acted
upon? What actions are being taken by the agents?

5 - How do the agents interact with each other? With the environment? How expansive or focused are agent
interactions?

6 - Where might the data come from, especially on agent behaviours, for such a model?

7 - How might you validate the model, especially the agent behaviours? (Macan 2010)



Create an environment in which the agents may interact and make the environment sensitive to actions by the agent.
Create a virtual space where agents interact according to the defined rules and patterns.
Define the feedback loops between the agent and its environment.

Create a population of autonomous agents (run-time objects) capable of making simple decisions in a domain.
Create a population of autonomous agents that encapsulate functions, internal memory, and a strategy.
Agents can follow different (heterogeneous) or the same (homogeneous) strategy.

Set-up agent and the modes of interaction.
Define the underlying topology of connectedness> who interacts with whom, and driven by what rules?

Define the update rules. Define the algorithm by which the different components (functions) of your model will be evaluated.
Determine the mode and sequence of updating the population of agents and the environment.
Define what rules apply for the elementary processes in the system, such as death, survival, proliferation,
reproduction, migration, production, consumption/feeding, etc.

Determine the dependent and independent variables of the system, the static and the dynamic attributes.
Independent - the cause: input (controlled, explanatory) — Dependent - the effect: output (response).
What can change and what is kept constant, unchanged during a simulation run and what changes?

Initialize the model, allow the agents to operate autonomously, and observe for emergent complex phenomena.
. Allow the agents to act and to adapt to their changing (,,abiotic”, ,biotic”, ,social”) environment through
mechanisms such as evolutionary, learning or optimization algorithms.

(Macal et al. 2010; turingfinance.com/perfect-imperfection-agent-based-models-abm)
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Update rules

a. Birth-death (BD) b. Death-birth (DB)
birth death death birth
c. Imitation (IM) d. Pairwise comparison (PC) ) :' :
% / .\ p Birth-Death Death-Birth
R A ~ & -
\ \. BD and PC updates promote defection
ipdate e ipdate — DB and IM updates promote cooperation

(Ohtsuki 2006)



A few examples



ABM history- Socio-economic systemes:
A model of segregatlon (Schellmg 1969)
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Simple rules:
- look around
- relocate if not satisfied (many other types are around).

Yet, can explain observed, real-life patterns



ABM history — Biology:
The flocking model
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ABM history - Biology
The flocking model & real-life use
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ABM & Game theory

@ - cooperators / producers
@ - defectors / free-riders

NEIGHBOR

FOCAL




IBM & Inter-species mutualism
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IBM & Game theory with
two types of agents

Symbiont
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IBM & particle-based modelling

Non- Producers Habitat
producers (space)



IBM & particle-based modelling

Dynamics of the antibiotics in the environment
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IBM & particle-based modelling

Individuals Antibiotics
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IBM & interaction networks & particle-based modelling
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IBM & Cross-feeding: Specialists — Generalist — Free-rider population dynamics

Growth effect

Diffusible resource produced Cost of of the resource:
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IBM & Cross-feeding: Specialists — Generalist — Free-rider population dynamics
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IBM & Gradient model
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IBM & Gradient model
& Specialists — Generalist — Free-rider/Sensitive
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IBM & Gradient model
& Specialists — Generalist — Free-rider/Sensitive
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ABM platforms

Specialized softwares: AnyLogic, NetLogo, Repast (Repast-HPC), Sesam, Swarm, etc.
+ Lower entry barrier, graphical GUI, specialized libraries, online simulations
- Slower simulation speed, limited scalability, limited capacity

General-purpose programming languages: C, C++, Java, Julia, Pascal, MATLAB, Mathematica,
Python

+ Almost unlimited scalability (HPCs), debugging
- Higher entry barrier, skills and time is necessary for coding, GUI is less easy to learn

Combined solutions
 Model in AnyLogic/NetLogo, output analysis in R
* Model using specialized libraries of general-purpose languages (e.g., JAS-mine/ JAVA)

ABM software comparison
 https://en.wikipedia.org/wiki/Comparison of agent-based modeling software



https://en.wikipedia.org/wiki/Comparison_of_agent-based_modeling_software
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NetLogo
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ABM challenges

1. Optimize model complexity, choose the right modelling framework.

2. Compare ABMs and their results, predictions (problem of transparent
and universal documentation).

3. Verify and validate ABMs.



ABM challenges 1. Optimize model complexity:

Model payoff / Abstract ABMs Empirical ABMs
utility

Medawar rane

>
Complicatedness (Sun et al. 2016)



ABM challenges

2. Compare ABMs:
transparent and universal documentation.

1. Purpose and patterns

Basic principles

2. Entities, state variables and scales

Emergence

3. Process overview and scheduling

Submodel A
Submodel B ...

Adaptation

Objectives

Design concepts

Learning

Initialization

Prediction

Input data

Sensing

Interaction

N|o ks

Submodels
Submodel A (Details)
Submodel B (Details) ...

Stochasticity

Collectives

Observation

Model code sharing

Specialised platforms
comses.net
cloud.anylogic.com
runmycode.org

GitHub

(Grimm et al. 2020)



ABM challenges
3. Verify and validate ABMs.

Baseline behavior. Validate model with known parameters, retrieve published outcomes.

Data-driven modelling. Train functions, parameters, behavioral components with data.

Supervised ML
algorithm(s) ’\
O Micro-Agent
behavior model
C ABM

Simulation ._y

!

Training
dataset
D’r-w-

©

(Real-world

(Zhang et al. 2021)



Complex ABM with multiple GIS Data layers

GIS environmental data
Temperature
Crops

Precipitation

GIS social data
Village location
1 Population size

Cellular automaton

Pest survival (T ; P ; crops)
Pest dispersal (density)
Pest fecundity (T)

Agents

Farmers - pest control knowledge
- team

- infestation state
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(Rebaudoa et al. 2011)



Macroeconomic agent-based model for the macro-economy

Agent-based model with explicit sector detail ALt
ustria

and millions of interacting agents;
intersectoral input-output and financial
linkages;

calibrated micro- and macroeconomic pms;
microfoundations for heterogeneous agents,
financial frictions, and bounded rationality
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Social-force model: pedestrian behavior
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(Helbing and Molnar 1995; Johansson & Krietz 2011; Dam et al. 2014; Zeng et al. 2014; Gorrini et al. 2016; smartctlab.web.illinois.edu; unalab.eu)



Social-force model: pedestrian behavior
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ABM & Machine learning: understanding interaction networks
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(Lee et al. 2020)



ABM & Machine learning: parametrizing bacterial colony growth
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Summary

ABM is a extremely flexible modelling framework
ABMs can be almost as complex as real life systems

Very simple rules can recover patterns observed in the real world
More than the sum of parts

Modular structure, easy to develop further

Unpredictable dynamics and resultant patterns: emergent behavior in a
complex system
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