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Genomics
(DNA copy number)

What multi-omics data integration

Epigenomics

(DNA methylation) can offer

Transcriptomics / // Multi-Omics - More comprehensive

(mRNA expressions) e _,55 Data Integration understanding of biological systems
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- Improved prediction of outcomes
of interests (e.g., disease traits, drug
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Three technical challenges:

Complex interactions Incomplete observations Cost efficiency

Integration of information within - Observations with various omics-missing patterns Value of incorporating each
and across observed omics - No information loss and distortion omics observation is unknown
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https://www.vanderschaar-lab.com/self-semi-supervised-learning/
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(some) topics In data integration

- Improve predictions (of external labels)

~

- explore associations (btw. two or more data sets)

- Identify latent processes and mechanisms

- Incorporate prior knowledge
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Associating data with external variables

- e.g. prediction tasks

" J




Prediction with a single data source
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Concatenation: a null model for data integration?
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Multi-view learning: advanced models for data integration?
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Deep learning as an example
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Hidden layers

Fig. 1. Structure of an interpretable artificial neural network. The input layer is followed by an additional
pathway layer, where each node corresponds to a known molecular pathway. If a molecule is known to be
involved in a pathway, a connection is made between the two. Hence, important pathways implicated in the
outcome are activated with bigger weights during training. Figure inspired from Deng et al. (2020).



Mixed artificial neural network
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Integration strategies of multi-omics data

. - . Example of a mixed artificial neural network. Each omics block is first reduced to a latent representation using independent
for machine learning analysis

Stacked Sparse Autoencoders (SAE). The new representations learned are integrated in a final shared layer. The common
Milan Picard %, Marie-Pier Scott-Boyer * Antoine Bodein %, Olivier Périn ®, Armaud Droit* & & representation is used for downstream analysis such as prediction or clustering. Figure inspired from Xu et al. (2019)



1 1 1 MOGONET integrates multi-omics data using graph
I m p rO V I n g p re d I Ct I O n S by convolutional networks allowing patient
classification and biomarker identification

data integration e e o s

Nature Communications 12, Article number: 3445 (2021) | Cite this article
7874 Accesses | 3 Citations | 40 Altmetric | Metrics
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MOGONET combines GCN for multi-omics-specific learning and VCDN for multi-omics integration.
For clear and concise illustration, an example of one sample is chosen to demonstrate the VCDN
component for multi-omics integration. Preprocessing is first performed on each omics data type
to remove noise and redundant features. Each omics-specific GCN is trained to perform class
prediction using omics features and the corresponding sample similarity network generated from
the omics data. The cross-omics discovery tensor is calculated from the initial predictions of omics-
specific GCNs and forwarded to VCDN for final prediction. MOGONET is an end-to-end model and
all networks are trained jointly.



Data integration leads to improved predictions in a

BRCA data set
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a Results of the {881y dataset. b Results of the LGG dataset. ¢ Results of the BRCA dataset. Means
of evaluation metrics with standard deviations from different experiments are shown in the figure,

where the error bar represents plus/minus one standard deviation. mRNA, meth, and miRNA refer

to single-omics data classification via GCN with mRNA expression data, DNA methylation data, and

miRNA expression data, respectively. mRNA + meth, mRNA + miRNA, and meth + miRNA refer to

classification with two types of omics data. mRNA + meth + miRNA refers to classification with three

types of omics data. Source data are provided as a Source Data file.



A non-exhaustive list of multi-block dimensionality reduction methods for multi-omics datasets. NMF: Non-negative Mafrix Factorization, MOFA: Multi-Omics Factor Analysis, JIVE: Joint and Individual
Variation Explained, MO: multi-omic.

Method

Principle

Purpose

Recent applications

jNMF/intNMF/nNMF [132],
[133], [139]

MOFA/MOFA+ [141], [142]

iCluster [145]

iClusterPlus [146]

iClusterBayes [147]

JIVE/JIVE [151], [152]

Integrated PCA ot

SLIDE [130]

Matrix factorization

Bayesian Factor Analysis

Gaussian latent variable model Generalized
linear regression Bayesian integrative

clustering

Matrix factorization

Generalized PCA

Matrix factorization

Disease subtyping, module

detection, biomarker discovery

biomarker discovery, systemic

knowledge

Disease subtyping, biomarker

discovery

Disease subtyping, systemic

knowledge, module detection

Visualization, prediction

Disease subtyping, module

detection, biomarker discovery

JNMF found biomarkers in MO and pharmacological data connected to drug sensitivity in cancerous cell lines [140].

intNMF identified Glioblastoma and breast cancer subtypes from MO and clinical data [134].

MOFA found new biomarkers and pathways associated with Alzeihmer’s disease based on MO data including proteomics,
metabolomics, lipidomics [143].MOFA + found predictive biomarkers from DNA methylation and gene expression data in

cardiovascular disease [ 144].

iCluster was used to identify subtypes of esophageal carcinoma from genomic, epigenomic and transcriptomic data [ 148].

iClusterPlus was used to identify subtypes of non-responsive samples with ovarian cancer from different omics datasets [149].

iClusterBayes was used to identify predictive biomarkers and clinically relevant subtypes on MIB cancer from 5 different omics

[150].

JIVE was used as a dimension reduction technique to improve survival prediction of patients with glioblastoma from mRNA,

miRNA and methylation data [153].

iPCA was used as a dimension reduction technique to improve prediction of outcome on lung cancer from CpG methylation data,

mRNA and miRNA expression [154].

SLIDE was used on DNA methylation data and gene, protein and miRNA expression for subtyping patients with breast cancer
[130].
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-

(some) questions In data Integration

- alsymmetry between data sets?

- two or more data sets?
- known structure?

- computational requirements?

-

- scale: small mechanistic models vs. large-scale exploration?

~

/
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Predicting external labels

e N
Association - .
one data set Is primary ot

N . — /
Association - | | | |

all data sets are equal
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HUMANN is a method
for profiling the
abundance of microbial
metabolic pathways
from metagenomic or
metatranscriptomic
sequencing data
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Predicting external labels
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Multi-view learning

- Symmetric setup
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Example: PCA vs. CCA

PCA: Principal component analysis
— captures maximal variation in a single data set

CCA: Canonical correlation analysis
— captures maximal correlation between two data sets

/Pro babilistic PCA TN y- N

X =W,z + ¢,
\_




Human gut microbiome ordination
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. Multi-view learning:
A = sz T Ep CCA is a generalization of PCA

L (Bach & Jordan 2005)
Y =W,z + ¢,

https://github.com/mblstamps/stamps2019/blob/master/
STAMPS2019 overview_Pop.pdf


https://github.com/mblstamps/stamps2019/blob/master/STAMPS2019_overview_Pop.pdf
https://github.com/mblstamps/stamps2019/blob/master/STAMPS2019_overview_Pop.pdf

Chromosome arm 179

Investigate dependencies within local chromosomal regions
using sliding window
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Chromosome arm 17q: results

SIMCCA measures dependency between data sources
within each chromosomal region
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Chromosome arm 17q: results

SimCCA reveals known gastric cancer-associated

chromosomal regions
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Interpreting the parameters

Z: affected patients

Expression: 17q

Amplifications: 17q

W': dependent observations

02 03 04 05

0.0 01

Genes

X =W,z + ¢,
Y =W,z + ¢,
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Multi-Omics Factor Analysis—a framework for
unsupervised integration of multi-omics data sets

Ricard Argelaguet @, Britta Velten @, Damien Arnol @, Sascha Dietrich @, Thorsten Zenz®,

John C Marioni®, Florian Buettner® 4, Wolfgang Huber ® &4, Oliver Stegle

Author Information

Molecular Systems Biology (2018) 14: e8124 https://doi.org/10.15252/msb.20178124
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MOFA+: a statistical framework for comprehensive
integration of multi-modal single-cell data
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From: MOFA+: a statistical framework for comprehensive integration of multi-modal single-cell data
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Fig. 2

From: MOFA+: a statistical framework for comprehensive intepration of multi-modal single-cell data
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Integration of heterogeneous scRNA-seq experiments reveals stage-specific transeriptomie signatures associated with cell type commitment in mammalian
development. a The heatmap displays the percentage of variance explained for each Factor (rows) in each group (pool of mouse embryos at a specific
developmental stage, columns). b, e Characterization of Factor 1 as extra-embryonic (ExE) endoderm formation (b) and Factor 4 as Mesoderm commitment
(c). In each panel, the top left plot shows the distribution of Factor values for each batch of embryos. Cells are colored by cell type. Line plots (top right) show
the distribution of gene weights, with the top five genes with largest (absolute) weight highlighted. The bottom beeswarm plots represent the distribution of
Factor values, with cells colored by the expression of the genes with highest weight. d Line plots show the percentage of variance explained (averaged across
the two biological replicates) for each Factor as a function of time. The value of each replicate is shown as gray dots. e Dimensionality reduction using t-SNE
on the inferred factors. Cells are colored by cell type
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Iterative single-cell multi-omic integration using
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Fig.1: Overview of the online iNMF algorithm.

From: Iterative single-cell multi-omic integration using online learning
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a, Schematic of iINMF: the input single-cell datasets are jointly decomposed into shared (W) and dataset-specific (1) metagenes and corresponding
‘metagene expression levels or cell factor loadings (H). These metagenes and cell factor loadings provide a quantitative definition of cell identity and
how it varies across biological settings. b-d, Three different scenarios in which online learning can be used for single-cell data integration. b, Scenario 1:
the single-cell datasets are large but fully observed. Online iNMF processes the data in random mini-batches, enabling memory usage independent of
dataset size. Each cell may be used multiple times in different epochs of training to update the metagenes. ¢, Scenario 2: the datasets arrive sequentially,
and online iNMF processes the datasets as they arrive, using each cell to update the metagenes exactly once. d, Scenario 3: online iNMF is performed as in
Scenario 1 or Scenario 2 to learn Wand V.. Then cell factor loadings for the newly arriving dataset are calculated using the shared metagenes (W) learned

from previously processed datasets. The new dataset is not used to update the metagenes.
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Multitable Methods for Microbiome Data

Integration

Kris Sankaran!* and

Property

Analytical solution

Require covariance estimate

Sparsity

Tuning parameters

Probabilistic

Not Normal or Nonlinear
>2 Tables

Cross-Table Symmetry

Susan P. Holmes?

Algorithms

Concat. PCA, CCA, ColA, MFA, PTA,
Statico/Costatis

Concat, PCA, CCA, ColA, MFA, PTA,
Statico/Costatis

SPLS, Graph-Fused Lasso, Graph-Fused
Lasso

Sparsity: Graph-Fused Lasso, PMD, SPLS
Number of Factors: PCA-IV, Red. Rank
Regression, Mixed-Membership CCA Prior
Parameters: Mixed- Membership CCA,
Bayesian Multitask Regression

Mixed-Membership CCA, Bayesian Multitask

Regression

CCpNA, Mixed-Membership CCA, Bayesian
Multitask Regression

Concat. PCA, CCA, MFA, PMD

Concat. PCA, CCA, ColA, Statico/Costatis,
MFA, PMD

Consequence

Methods with analytical solutions generally run much faster than those that require
iterative updates, optimization, or Monte Carlo sampling. They tend to be restricted to
more classical settings, however.

Methods that require estimates of covariance matrices cannot be applied to data with
more variables than samples, and become unstable in high-dimensional settings.

Encouraging sparsity on scores or loadings can result in more interpretable, results for
high-dimensicnal data sets. These methods provide automatic variable selection in the
multitable analysis problem.

Methods with many tuning parameters are often more expressive than those without
any, since it makes it possible to adapt to different degrees of model complexity.
However, in the absence of automatic tuning strategies, these methods are typically
more difficult to use effectively.

Probabilistic techniques provide estimates of uncertainty, along with representations
of cross-table covariation. This comes at the cost of more involved computation and
difficulty in assessing convergence.

When data are not normal (and are difficult to transfonrm to normality) or there are sources
of nonlinear covariation across tables, it can be beneficial to directly model this structure.

Methods that allow more than two tables are applicable in a wider range of multitable
problems. Note that these are a subset of the cross-table symmetric methods.

Cross-table symmetry refers to the idea that some methods don't need a supervised
or multitask setup, where one table contains response variable and the other requires
predictors. The results of these methods do not change when the two tables are
swapped in the method input.
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Include prior knowledge

We develop new hierarchical
models to incorporate external
information from existing
databases and research studies,
such as gene or pathway
information, previous association
studies, and the known
evolutionary consequences of
genomic and metagenomic
changes.




TreeSummarizedExperiment data container

by Ruizhu @fiona Huang; initially proposed for microbiome research by Hector Bravo & Domenick Braccia
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Seamless conversion from phyloseq & other raw data types



1__Generative Models for Discrete Data

Home

CC BY-NC -84

3 High-Quality Graphics in R

4 Mixture Models

5 Clustering
6 Testing

7 Multivariate Analysis
8 High-Throughput Count Data

9 Multivariate Methods for Heterogeneous Data

10 Networks and Trees
11 Image Data

12 Supervised Learning

Figure 5: The online version provides the text in

13 Design of High-Throughput Experiments and Their Analyses
HTML, data files and up-to-date code.
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Take-home messages

- Heterogeneity of problems
- Role of bias & noise, need for data-specific customization

- Importance of study question

(e, e
N 5 8
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Day 2 (Times in CET)

Lectures
9:15-10:00 - Unsupervised ML- Matti Ruuskanen, Postdoctoral researcher (UTU)
10:15-11:00 - Supervised ML - Matti Ruuskanen
11:15-12:00 - Individual-based modeling - Gergely Boza, Research fellow (CER)

12:15-13:00 - Data integration - Leo Lahti, Associate professor (UTU)
13:00-14 - Lunch break

Practical
14:15-17:00 - Tuomas Borman, Matti Ruuskanen and Chouaib Benchraka (UTU)
Association analyses with biclustering
Demo on MOFA
Supervised learning: Regression and classification with random forests

Validation and interpretation of black box models
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